
B.Tech Project (BTP) Report: Control of Continuum Robots Using
Deep Reinforcement Learning

Sai Aneesh Suryadevara (190100125), Department of Mechanical Engineering, IIT Bombay

Abstract— This report deals with the underlying motivation
and methodologies utilised in the successful actuation of a sim-
ulated soft robotic arm. Vega FEM C++ middleware library [1]
was used to simulate the dynamics of a mass-spring model of
a beam under the application of five torques. The amount of
torques to be applied were found by formulating the problem
as a reinforcement learning task. We have tested the control
using Reinforcement Learning in four tasks - Path Following
(Family of arcs), Trajectory Following, Trajectory Following
with Energy minimization and lastly, Elliptical Trajectory
following. The code for the project can be found at : Github
Project Link

Index Terms – Reinforcement Learning, Continuum Robots,
Control Theory, Soft-Actor Critic (SAC)

I. INTRODUCTION

Continuum robots are a class of robots that have flexible
and continuous structures, which enable them to perform
tasks in constrained and challenging environments. However,
the complex kinematics and dynamics of continuum robots
make their control a challenging problem. Even when all the
information about the environment and the soft robot itself
is provided, building an effective model for a particular task
is still a substantial challenge. It may involve very complex
physical mechanics analysis that can only be established for a
specific task. With small changes to the task or environment,
the model may be significantly different. To date, there is no
principled way for modeling soft robots due to the diversity
of material and structure (e.g., pneumatic, hydraulic, cables,
electro-active polymers).

To address these challenges, we wish to explore a new
approach to the control of soft robots, primarily working
on two aspects: designing an abstract representation of the
state of soft robots, and developing a reinforcement learning
method to derive effective control policies. The reinforce-
ment learning process can be trained quickly by ignoring
the specific materials and structural properties of the soft
robot.

Reinforcement learning (RL) is a subfield of machine
learning that has shown great potential in controlling con-
tinuum robots. RL algorithms enable robots to learn control
policies through interactions with the environment, without
requiring an accurate model of the system’s dynamics. Re-
cent research has demonstrated the effectiveness of RL in
various tasks, such as obstacle avoidance, path planning, and
manipulation.

One of the main advantages of RL-based approaches
for controlling continuum robots is their ability to handle
the complex and nonlinear behavior of these systems. RL
algorithms can learn control policies that optimize task

performance without requiring an accurate model of the
system’s dynamics.

Moreover, RL-based approaches are adaptive and can
handle changes in the robot’s environment and task require-
ments. Traditional model-based control methods require an
accurate model of the system’s dynamics, which may not
be possible for complex and uncertain systems such as
continuum robots. Furthermore, model-based approaches are
often computationally expensive, limiting their use in real-
time applications. In contrast, RL-based approaches can learn
control policies in a data-driven manner without requiring an
accurate model of the system’s dynamics.

II. RELATED WORKS

To study the performance of data-driven control approach
of continuum robots using Reinforcement Learning, we take
inspiration from several works in this domain. When imple-
menting RL algorithms to robots and other real equipment,
an efficient simulator is often needed for training. Previously,
researchers mainly choose an ABAQUS subroutine to simu-
late deformations of the robots. Models from the computer
graphics community like discrete differential geometry and
Cosserat rod give rise to new simulation methods for soft
robots, which are quicker to compute with fair precision and
provide possibilities for the implementation of modern AI
techniques like RL.

In the work [2] for the actuation of soft magnetic robots,
the authors have used the Cosserat rod model for modelling
the soft robot and used PyElastica as the simulation envi-
ronment. They have used the TD3 algorithm for training.
In work [3], they have used piece-wise constant curvature
(PCC) for modelling the soft robot, used V-REP for the
simulation and Soft-Actor Critic as the RL algorithm. In the
works [4], [5] the authors have used the MuJoCo simulation
environment and used the Soft Actor Critic algorithm for
training the soft robot. For our work, we primarily took
inspiration from the works [6] and [7] where they have
used OpenAI Gym [8] for training the RL policies. This is
useful for our work as we can integrate our physics simulator
VEGA FEM, with a custom OpenAI Gym environment for
RL training.

III. METHODOLOGY

In this work, the goal is to control the continuum robot and
achieve path following and trajectory following tasks. In the
earlier work (BTP - I) [9], we have discussed how we created
the RL environment by developing a custom OpenAI Gym
environment and using ROS framework to integrate it with

https://github.com/sai-aneesh/BTP_rl_continuum_robot
https://github.com/sai-aneesh/BTP_rl_continuum_robot

the Vega FEM C++ middleware library, which simulates the
dynamics of the continuum robot. Now we will discuss how
we have implemented Soft Actor Critic algorithm to achieve
our tasks.

A. The Continuum Robot

We chose to utilize the VEGA FEM library to simulate
the dynamics of the Mass Spring Model. Vega is a computa-
tionally efficient and stable C/C++ physics library for three-
dimensional deformable object simulation. It is designed to
model large deformations, including geometric and material
nonlinearities.

Fig. 1: Mass-Spring Model (MSS)

Fig. 2: The soft robot modelled using MSS

The mechanical properties and dimensions of the contin-
uum robot we would using for our experiments is given
below:

Number of nodes
3 in each row
31 columns

Total = 93 fixed vertices
Number of Edges 360

Dimesions of
the Beam

Width = 0.05 m(x-direction)
Length = 0.75 m(y -direction)

Surface Density 60
Tensile Stiffness 18750 N/m
Shear Stiffness 18750 N/m

Bending Stiffness 0 N/m

Application of Torques Between Nodes 16-18, 34-36,
52-54, 70-72 and 88-90

B. Defining the MDP

A Markov decision process (MDP) refers to a stochastic
decision-making process that uses a mathematical framework
to model the decision-making of a dynamic system. It is used
in scenarios where the results are either random or controlled
by a decision maker, which makes sequential decisions
over time. MDPs evaluate which actions the decision maker
should take considering the current state and environment of

the system. We formulate RL problems as a Markov Decision
Process (MDP). In our case,

C. Deep Reinforcement Learning

Firstly, we realize that our observation space (the position
of the soft robot) and the action space (the torques to be
applied) are continuous (not discrete). So, in this case we
have three well known algorithms - Twin Delayed DDPG
(TD3), Proximal Policy Optimization (PPO) and Soft Actor
Critic. After our literature survey and trying out PPO and
TD3, we have proceeded with the SAC algorithm as it gives
the best results for this problem setting.

D. Soft Actor Critic

Soft Actor Critic (SAC) Off-Policy Maximum Entropy
Deep Reinforcement Learning with a Stochastic Actor. A
key feature of SAC, and a major difference with common
RL algorithms, is that it is trained to maximize a trade-
off between expected return and entropy, a measure of
randomness in the policy.

Fig. 3: Here we use the MlpPolicy which implements the
Actor-Critic neural networks with 2 layers of 64 neurons.

E. Hyperparamter Tuning

1. Learning Rate: corresponds to the strength of each gra-
dient descent update step. This should typically be decreased
if training is unstable, and the reward does not consistently
increase. We have varied the learning rate within these values
[1e− 3, 3e− 4, 1e− 5, 1e− 6]. The default value is 0.0003
Here, I have compared only upto 70K timesteps because
some of the training went unstable afterwards. We see that

Fig. 4: Best result with learning rate = 0.001

the lowest lr = 1e-06 is not able to learn. As we keep
increasing the learning rate, we find the best performance
with lr = 0.001. This is the most important hyperparameter
to be tuned as it significantly affects the performance.
2. Tau: corresponds to the magnitude of the target Q update
during the SAC model update. In SAC, there are two neural
networks: the target and the policy. The target network is
used to bootstrap the policy’s estimate of the future rewards
at a given state, and is fixed while the policy is being updated.
This target is then slowly updated according to tau. Typically,
this value should be left at 0.005. For simple problems,
increasing tau to 0.01 might reduce the time it takes to learn,
at the cost of stability. We have varied tau in these values
[0.01, 0.005, 0.001]

Fig. 5: Best result with tau = 0.01
3. Gamma: The discount factor is a hyperparameter that
controls how much the agent values future rewards over
immediate ones. It is usually denoted by gamma, and ranges
from 0 to 1. A low gamma means the agent is short-sighted

and only cares about the current reward, while a high gamma
means the agent is far-sighted and considers the long-term
consequences of its actions. For actor-critic algorithms, the
discount factor affects the critic network, as it is used to
calculate the expected return. We have varied the gamma
between [0.9, 0.95, 0.99]

Fig. 6: Best result with gamma = 0.9
4. Batch Size: is the number of experiences used for one
iteration of a gradient descent update. The default value is
64. However, when we are working with continuous action
spaces, it is advisable to go with larger values, typically in
the range [256, 512, 1024].

Fig. 7: Best result with batch size = 512

Tuned Hyperparamters

Hyperparameters Optimal Value
Learning Rate 0.001

Tau 0.01
Gamma 0.9

Batch Size 512
generalized State Dependent Exploration True

Fig. 8: MODEL 1 : a) Mean Episode length (11.8 timesteps) and Mean Episode reward (-19.83) for Task 1 with only tip
as state information. b) We can see the performance of the model, it is following the arcs even though the arc radius is
changing. However, there is a lot of jitter.

IV. TASK 1: PATH FOLLOWING TASK

For the first task, we aim follow an arc of angular width
160° with the radius ranging between [0.2, 0.6]. The Target
Angular velocity is fixed at 0.5 rad/sec. Note: The direction
of the target can change suddenly during the arc motion, but
the agent will still follow the target.

Fig. 9: The shaded region indicates the robot workspace

A. State has only tip of the robot

We begin with the most simple case. The state information
only contains the coordinates of the tip of the robot and
reward is the euclidean distance between the tip and the
target.

B. Limiting the action space (the torques applied) to avoid
jitter while following the path

Here, in the Task 1 result, we see a lot of jitter while the
robot is trying to follow the path. So we will try to limit the
torques and test whether it will improve performance and
reduce the jitter.

As we know the action space is A = [τ1, τ2, τ3, τ4, τ5],
where each τi ∈ [−1, 1]. However, the actual torques sent
to the VEGA FEM, for calculating the deformations of the
soft robot, are scaled to [−4.5, 4.5]. So, here we verify
if this is the optimal range of torques for the task or if
we can achieve a smoother performance with lower torque
values. We have compared the performance with torque in the
ranges: [−0.5, 0.5], [−1.5, 1.5], [−3, 3], [−4.5, 4, 5], [−6, 6].

Fig. 10: The best performance is with τ = [−4.5, 4.5]

C. Complete State information of 6 points on the robot

Fig. 11: MODEL 3, with (case 2) reward function:(a) Mean Episode reward (-192.4) for Task 2 with six point state
information. (b) The Matlab visualisation of the soft robot (c) Following an arc of radius = 0.5 with velocity = 0.12 (fixed
radius and fixed velocity) (d)The velocity vx and vy plot (e)The torques being applied

The state information contains the coordinates of 6
equidistant points on the robot and these points are the points
of application of torque. This ensures that the agent has more
precise information of how the soft robot actually deforms
with the application of torques.

Model Mean Reward (2000 timesteps)
Model 1: Only Tip as state -1.60

Model 2: 6 point state information -1.52

Conclusion: Model 2 performs better as expected, and it has
higher mean reward, which implies it has better performance
in path following.

V. TASK 2: TRAJECTORY FOLLOWING

For the second task, we aim follow an arc of angular
width 160° with the radius ranging between [0.2, 0.6]. How-
ever, now the target Angular velocity is varying between
[0.1, 0.5] rad/sec. Hence the MDP will now change as we
include the velocity term in the reward function. Note: Here
also, the direction of the target can change suddenly during
the arc motion, but the agent will still follow the target.

A. Reward Function Design

Now, since we have two objectives, firstly to minimize the
error between the tip of the robot and the target, and secondly
to follow the path with any given velocity. (minimize the
difference between the velocity of the robot tip and the
velocity of the target). We now test three cases, where we
first compare the performance with respect to the importance
of each term in the reward function. (Case 1 and Case 2).
Next we look at the effect of scaling the reward term. (Case 2
and Case 3). Hence, there are three cases of Model 3.

Fig. 12: a) Case 1: Green is training from scratch. (100k
timesteps, 5 hours, Reward -12,000) Orange is training from
pretrained model. (300k timesteps, 15 hours, Reward -6000)
b) Case 2: Blue shows case 2, training from scratch. (200k
timesteps, 15 hours, Reward -400) c) Case 3: Pink shows
model 3, training from case 2 initialization. (90k timesteps,
6 hours, Reward -4760)

Fig. 13: The best performance is with Case 2. Hence, this
is best handcrafted reward function for this task.

B. Effect of the velocity term in the reward
Though, we had expected the velocity term to be useful

in the trajectory following, the soft robot was not following
the desired velocity very closely. It has oscillations where
it peaks to the max value and settles down again. However,
it had an interesting effect on the path following. We can
see that the robot now follows the path with less jitter. This
can be explained as the velocity term penalizes the robot for
sudden and erratic movements.

Fig. 14: Following an arc of constant radius r = 0.5
Above: This is the path following output from MODEL 2.
Below: We can see the improved performance of MODEL 3
and smooth tracking when we have added velocity term in
the reward.

Fig. 15: Comparing the Velocity terms vx, vy for both models
Above: MODEL 2, We can see the high values of vx, vy
in the range [-0.3, 0.3] Below: MODEL 3 Here the actual
velocities vx, vy are smaller, in the range [-0.05, 0.05]

Hence, as explained above, adding the velocity term in
the reward function helped to regulate the high velocities
and thus ensured a better path following task performance.

MODEL 2
(Fixed radius = 0.5)

MODEL 2
(radius ∈ [0.2, 0.6])

Distance
Error 0.075 0.088

MODEL 3
(Fixed radius = 0.5)

MODEL 3
(radius ∈ [0.2, 0.6])

Distance
Error 0.045 0.064

Important Conclusions:
• Firstly, by randomly changing the direction of the target

from clockwise to counter-clockwise direction (or vice
versa) along the arc, at random intervals during the
training, improved the performance

• The trained models can follow an arc of any radius
r ∈ [0.2, 0.6] which is important for generalization
capabilities

• The velocity term in the reward helped perform path
following more smoothly. However, it failed to move
along the path with the desired velocity.

VI. TASK 3: TRAJECTORY FOLLOWING WITH ENERGY
MINIMIZATION

We know that a continuum robot can reach a specific point
in multiple ways, however we wish to reach the point with
minimum work done. Considering the work done by the
robot to reach a point as |

∑5
i=1 τiθi|, we wish to minimize

this term. Hence we modify the reward function as shown
below:

Fig. 16: RL Training plot, Mean Reward of -226.4 after
training time of 13 hours

We can see the results of the model below. While, we
can see that the energy term has reduced, but now the path
following is not as good as before (Model 3). This can be
attributed to the complex reward function we have for this
model. Since it has mutliple terms, it is a very tedious task
to appropriately scale the three terms to achieve optimal
performance as we expect.

Energy
Minimization

Task

Trajectory Following
(Model 3)

Mean
Reward -4.41 -3.08

Mean
Distance

Error
0.053 0.045

Mean
Velocity
Error

0.127 0.128

Mean
Energy
Term

1.02 1.55

Fig. 17: (a) The Matlab visualization showing the trajectory
following task with energy minimization (b) The path fol-
lowing plot (c) Velocity tracking plot (d) The torques applied

VII. TASK 4: FOLLOWING AN ELLIPTICAL TRAJECTORY

After exploring the task of following a family of arcs,
we move to a more challenging problem of following a
more complicated trajectory - an ellipse. The equations of
the elliptical trajectory are given below:

Fig. 18: Parameters for training the agent

A. Effect of scaling the torques

Initially, the model didn’t work well when the torques were
in the range [−4.5, 4.5]. Hence for this task, I scaled the
torques to the range [−8, 8]. If we look at the performance

Fig. 19: State and Reward for training is same as MODEL 3

Fig. 20: RL Training plot, Mean reward of -182.8 after
training time of 23 hours

of the model, we can see that follows the elliptical trajectory
pretty well.

B. Curriculum Learning for this task

Since this was more challenging task than earlier case of
arc following, directly training the model on variable pa-
rameters: semi-major axis, eccentricity and angular velocity
resulted in poor performance. Hence, we implemented the
curriculum learning approach where we increased the lesson
difficulty at each level. First after training the model on fixed
parameters, we slowly increase the parameter range so that
the agent learns the task progressively.

C. Reducing the target velocity

To enable more accurate path following of the elliptical
trajectory, we tried to implement the RL training at a lower
target angular velocity of 0.05 rad/sec. (Almost 10−20 times
slower than earlier case). However, the soft robot still fails
at the upper portion of the elliptical trajectory.

Elliptical
Path Following

Mean
Reward -3.00

Mean
Distance

Error
0.0475

Mean
Velocity
Error

0.109

Fig. 21: (a) The Matlab visualization showing the ellipse
following task (b) The path following plot (c) Velocity
tracking was not efficient (d) The torques applied

Fig. 22: The Case with slower target angular velocity. (a)
The Matlab visualization showing the ellipse following task
(b) The path following plot. I t particularly fails to follow
the path in the top section of the ellipse (c) Velocity tracking
(d) The torques applied

VIII. COMPARISON WITH EXISTING PUBLISHED WORKS

The problem with the existing literature is that, the only
measure of performance most papers have provided is the
Mean Episodic reward. We have also provided this metric
in our work, however this makes it harder for directly
comparing the results of one paper with another because the
reward functions could be different.

A. Paper 1: Elastica: A compliant mechanics environment
for soft robotic control [7]

In this work, the task is to achieve continuous 3D tracking
of a randomly moving target. The State, action, reward
framework of the agent is as follows.

State = [xa, xt, va, vt]

Coordinates of robot tip, coordinates of target, velocity of
robot tip, velocity of target

Action = [τ1, τ2, τ3, τ4, τ5, τ6]

The applied torque in each direction controlled by 6 equidis-
tantly spaced control points leading to a total of 12 degrees
of freedom.

where is n the square of the L2 norm distance between
the tip of the arm and the target n = ||xa − xt||2 and
d is a defined bonus range distance (here d = 5 cm).
Additionally, because the allowed action space was capable
of causing the simulation to become unstable, a penalty term
of −1000 was added any time a NaN was detected in the
state information, which indicated the simulation had become
unstable. Detection of a NaN would cause the episode to end.

The best performance was achieved by using the Soft-
Actor Critic (SAC) Algorithm.

B. Paper 2: Model-Free Reinforcement Learning with En-
semble for a Soft Continuum Robot Arm [5]

The authors proposed a system that could learn control
policies for a continuum robot arm to reach target positions
using its tip not only in simulations but also in the real world.
They used a pneumatically controlled continuum robot arm
that operates with nine flexible rubber artificial muscles. Each
artificial muscle can be controlled independently by pressure
control valves, demonstrating that the policy can be learned
using a real robot alone.

The state, action and reward are defined as follows:

Note that the positions of parts other than the tip were
ignored. In the learning phase, the target position was ran-
domly determined for each episode within a prede- termined
reachable range covering a cylinder with a height of 30 cm
and a radius of 30 cm. Each episode consisted of 300 steps.
The states are listed in Table above, added to the three-
dimensional difference between the target position and the
continuous arm tip position. The reward function was given
as

r(s, a) = −||tip position − target position||2

The reward function did not include a penalty term that
was dependent on the magnitude of the action, that is, the
magnitude of air pressure in a real robot. As mentioned in the
introduction, there is a lower need for penalty terms in soft
robots than in hard robots, and penalty terms also impede
learning; thus, they were not utilized in this study.

In this paper, the authors proposed an Ensembled
Light- weight model-Free reinforcement learning Network
(ELFNet) but the baseline they have compared with is again
the Soft-Actor Critic (SAC) Algorithm.

C. Paper 3: Position Control of Cable-Driven Robotic Soft
Arm Based on Deep Reinforcement Learning [10]

In this paper, the authors combine the data-driven model-
ing method with the reinforcement learning control method
to realize the position control task of robotic soft arm, the
method of control strategy based on deep Q learning.

State : the state space of the system consists of the following
three parts: the first part is the current soft arm shape param-
eter, which is composed of six coordinates’ information; the
second part is the current state of the steering gear driven
by the soft arm, which consists of four servo parameters; the
third part is the target position of the target soft arm, which
is composed of two coordinates’ information.

Action : In the soft arm problem, the original motion space
is high-dimensionally continuous, such as the servo control
frequency of the drive cable, and for the characteristics of the
deep Q learning algorithm, the original motion space needs
to be discretized. The soft robot arm is driven by four servos,
and each servo can choose two actions: tighten or relax.

Reward :
If the distance between tip of the robot and target is within

some bound ϵ, then we terminate the episode and move to
new one. The reward is given by

If ||Xc −Xt|| < ϵ R = 2

Elseif the distance between current tip position and target
is smaller than last tip pose and target, the episode is not
terminated and the reward is given by

||Xc −Xt|| < ||Xl −Xt||, then R = 1

Else, R = 0

In this paper, the authors adopt Deep Q-learning for
training the RL model.

D. Paper 4: Efficient reinforcement learning control for
continuum robots based on Inexplicit Prior Knowledge [11]

In this work also we look at the path following task where
the task is to achieve continuous 2D tracking of a randomly
moving target. The State, action, reward framework of the
agent is as follows.

State = [Coordinates of target w.r.t to the robot tip,
Accumulated actions]

Fig. 23: The origin is the tip of the robot and the state
information contains the distance of the target from the tip

Action = [Actions are the control values of four motors, each
is between (0, 1)]

The reward function r is essentially the raw reward is the
amount of state change between current state and next state.
There are also some special scenes need to amend the raw
reward which are listed below:

In this paper, the authors adopt the soft actor-critic (SAC)
as thier policy gradient algorithm and Model-Based Policy
Optimization (MBPO) as their MBRL algorithm.

IX. CONCLUSION

In this work, we explore data-driven approaches for con-
trol of a continuum robot using Reinforcement Learning. We
have started with the task of training the soft robot to follow
an arc of any radius. An important takeaway here is that,
we have to train the robot to move in both clockwise and
anti-clockwise directions and this transition must be made
at random time intervals. This significantly improves the
performance of the model. Overall, using the trained model
the robot was able to follow the path but there was a lot
of jitter. Then we looked at how increasing the state space
improves the performance by a little margin. However, the
best performance was achieved only after the reward term
was modified to include the velocity error term. This acted
as regularization term which prevented high velocities of the
robot and improved the path following performance. Then,
we looked at improving this performance by including an
energy minimization term. However, the reward function was
too complex with three terms that the model was not able to
learn the path following task so well. Lastly, we looked the
trajectory following of a more complicated path - an ellipse.
The training was successful in this task as well, however
there is some scope of improvement for this task as the robot
deviates from the path during some portion of the upper half
of the ellipse.

For future works, since we have already shown the work-
ing of RL control for this task in simulation, we could

test the performance on the real robot. Here, we can build
a curriculum learning framework, where we increase the
randomization of the properties of the soft robot (Tensile and
Bending stiffness etc.) after each lesson. This is essential as
the real world robot can have some variations in its properties
(over time) and using the curriculum learning framework, we
can train the model to achieve optimal performance in the
real world as well.

REFERENCES

[1] J. Barbič, F. S. Sin, and D. Schroeder, “Vega FEM Library,” 2012,
http://www.jernejbarbic.com/vega.

[2] J. Yao, Q. Cao, Y. Ju, Y. Sun, R. Liu, X. Han, and L. Li, “Adaptive
actuation of magnetic soft robots using deep reinforcement learning,”
2022.

[3] C. Yang, J. Yang, X. Wang, and B. Liang, “Control of space flexible
manipulator using soft actor-critic and random network distillation,”
2019 IEEE International Conference on Robotics and Biomimetics
(ROBIO), 2019, pp. 3019–3024.

[4] G. Li, J. Shintake, and M. Hayashibe, “Deep reinforcement learning
framework for underwater locomotion of soft robot,” 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021,
pp. 12 033–12 039.

[5] R. Morimoto, S. Nishikawa, R. Niiyama, and Y. Kuniyoshi, “Model-
free reinforcement learning with ensemble for a soft continuum robot
arm,” 2021 IEEE 4th International Conference on Soft Robotics
(RoboSoft), 2021, pp. 141–148.

[6] M. A. Graule, T. P. McCarthy, C. B. Teeple, J. Werfel, and R. J.
Wood, “Somogym: A toolkit for developing and evaluating controllers
and reinforcement learning algorithms for soft robots,” IEEE Robotics
and Automation Letters, vol. 7, no. 2, pp. 4071–4078, 2022.

[7] N. Naughton, J. Sun, A. Tekinalp, T. Parthasarathy, G. Chowdhary,
and M. Gazzola, “Elastica: A compliant mechanics environment for
soft robotic control,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3389–3396, 2021.

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016. [Online]. Available: http://arxiv.org/abs/1606.01540

[9] S. A. Suryadevara and A. Shah, “B.Tech Project Phase-I Report,
Control of Soft Robots Using Deep Reinforcement Learning,” 2022.

[10] Q. Wu, Y. Gu, Y. Li, B. Zhang, S. A. Chepinskiy, J. Wang, A. A.
Zhilenkov, A. Y. Krasnov, and S. G. Chernyi, “Position control of
cable-driven robotic soft arm based on deep reinforcement learning,”
Inf., vol. 11, p. 310, 2020.

[11] J. Liu, J. Shou, Z. Fu, H. Zhou, R. Xie, J. Zhang, J. Fei, and Y. Zhao,
“Efficient reinforcement learning control for continuum robots based
on inexplicit prior knowledge,” CoRR, vol. abs/2002.11573, 2020.
[Online]. Available: https://arxiv.org/abs/2002.11573

ACKNOWLEDGMENT

I acknowledge the support of Prof. Abhishek Gupta, Prof.
Shivaram Kalyanakrishnan and Mr. Shubham Agrawal, and
I wholeheartedly thank them for their guidance and fruitful
discussions.

http://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2002.11573

	INTRODUCTION
	RELATED WORKS
	METHODOLOGY
	The Continuum Robot
	Defining the MDP
	Deep Reinforcement Learning
	Soft Actor Critic
	Hyperparamter Tuning

	Task 1: Path Following Task
	State has only tip of the robot
	Limiting the action space (the torques applied) to avoid jitter while following the path
	Complete State information of 6 points on the robot

	Task 2: Trajectory Following
	Reward Function Design
	Effect of the velocity term in the reward

	TASK 3: Trajectory Following with Energy Minimization
	TASK 4: Following an Elliptical Trajectory
	Effect of scaling the torques
	Curriculum Learning for this task
	Reducing the target velocity

	Comparison with Existing Published works
	 Paper 1: Elastica: A compliant mechanics environment for soft robotic control elastica-rl
	 Paper 2: Model-Free Reinforcement Learning with Ensemble for a Soft Continuum Robot Arm modelfree
	 Paper 3: Position Control of Cable-Driven Robotic Soft Arm Based on Deep Reinforcement Learning ref-paper3
	 Paper 4: Efficient reinforcement learning control for continuum robots based on Inexplicit Prior Knowledge ref-paper4

	CONCLUSION
	References

